Extensions 1→N→G→Q→1 with N=C32 and Q=C3×D8

Direct product G=N×Q with N=C32 and Q=C3×D8
dρLabelID
D8×C33216D8xC3^3432,517

Semidirect products G=N:Q with N=C32 and Q=C3×D8
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×D8) = C3×C32⋊D8φ: C3×D8/C6D4 ⊆ Aut C32244C3^2:(C3xD8)432,576
C322(C3×D8) = He34D8φ: C3×D8/C8C6 ⊆ Aut C32726+C3^2:2(C3xD8)432,118
C323(C3×D8) = He36D8φ: C3×D8/D4C6 ⊆ Aut C327212+C3^2:3(C3xD8)432,153
C324(C3×D8) = C3×C322D8φ: C3×D8/C12C22 ⊆ Aut C32484C3^2:4(C3xD8)432,418
C325(C3×D8) = C3×C3⋊D24φ: C3×D8/C12C22 ⊆ Aut C32484C3^2:5(C3xD8)432,419
C326(C3×D8) = D8×He3φ: C3×D8/D8C3 ⊆ Aut C32726C3^2:6(C3xD8)432,216
C327(C3×D8) = C32×D24φ: C3×D8/C24C2 ⊆ Aut C32144C3^2:7(C3xD8)432,467
C328(C3×D8) = C3×C325D8φ: C3×D8/C24C2 ⊆ Aut C32144C3^2:8(C3xD8)432,483
C329(C3×D8) = C32×D4⋊S3φ: C3×D8/C3×D4C2 ⊆ Aut C3272C3^2:9(C3xD8)432,475
C3210(C3×D8) = C3×C327D8φ: C3×D8/C3×D4C2 ⊆ Aut C3272C3^2:10(C3xD8)432,491

Non-split extensions G=N.Q with N=C32 and Q=C3×D8
extensionφ:Q→Aut NdρLabelID
C32.(C3×D8) = D8×3- 1+2φ: C3×D8/D8C3 ⊆ Aut C32726C3^2.(C3xD8)432,217
C32.2(C3×D8) = C9×D24φ: C3×D8/C24C2 ⊆ Aut C321442C3^2.2(C3xD8)432,112
C32.3(C3×D8) = C9×D4⋊S3φ: C3×D8/C3×D4C2 ⊆ Aut C32724C3^2.3(C3xD8)432,150
C32.4(C3×D8) = D8×C3×C9central extension (φ=1)216C3^2.4(C3xD8)432,215

׿
×
𝔽